
 

 

 

Reference Guide 
SDK Documentation 

 
 

 
 
 
 
 
 
Version 2.7 
November 8, 2018 
 

  



INOGENI Reference Guide – SDK Documentation – Version 2.6  2 

 

 

Table of contents 

1. About This Guide ...................................................................................................... 3 

2. Introduction ............................................................................................................... 3 

3. HID Request Supported ............................................................................................ 3 

4. HID Descriptors Supported ...................................................................................... 3 

5. HID Connection ......................................................................................................... 4 

7. HID Communication .................................................................................................. 8 

8. Commands Format .................................................................................................. 10 

About the Message ID........................................................................................................12 

Accessible Registers and commands ....................................................................... 12 

I2C Commands .......................................................................................................... 12 

SPI Commands.......................................................................................................... 13 

FPGA Commands ...................................................................................................... 14 

FX3 Commands ......................................................................................................... 15 

UART Commands ...................................................................................................... 15 

Descriptor Commands ............................................................................................... 16 

FX3 Registers ............................................................................................................ 17 

9. Devices Version....................................................................................................... 18 

10. Firmware Update ................................................................................................... 21 

11. Bootloader ............................................................................................................. 40 

12. Troubleshooting .................................................................................................... 41 

  



INOGENI Reference Guide – SDK Documentation – Version 2.6  3 

 

 

1. About This Guide 

This document will help software developers to integrate the INOGENI HID interface to their 

software. Using the HID interface software developer will be able to update the INOGENI FX3, 

FPGA and EDID in the field. 

An application source code in VB.NET/C/C++ and binaries are provided as examples.  

2. Introduction 

The INOGENI device is a composite USB device made of a UVC device, a UAC device and a 

HID device. The UVC function is used to send video from the device to the host. The UAC device 

is used to send audio to the host. The HID interface is used to send / receive commands between 

the device and the host. Both functions do not need a custom driver to work. The UVC, UAC and 

HID functions are using the built-in driver of popular operating systems like Windows, OSX and 

Linux. This document describes all the details about the HID function only. 

To update the device software, we need to update the binary code for the FPGA, FX3 and EDID 

inside the device EEPROM. Once the binary in the EEPROM have been updated, a reset of the 

device is necessary so the device use the newly updated binary. 

3. HID Request Supported 

This HID device is supporting only one HID report: Report_ID “0”. Any attempt to get or 

set to a Report_ID different than “0” will report an error. 

The following table list all HID class specific requests supported by this USB function. The 

HID function will answer a USB_STALL when an unsupported HID command is sent to the device 

(as specified inside the HID specification). 

Table 1: Supported HID Requests 

HID REQUESTS VALUE 
ID 

SUPPORTED 

GET_REPORT 0x01 YES 
GET_IDLE 0x02 NO 

GET_PROTOCOL 0x03 NO 
SET_REPORT 0x09 YES 

SET_IDLE 0x0A NO 
SET_PROTOCOL 0x0B NO 

 

4. HID Descriptors Supported 

The HID function reports only the following HID descriptors: 

  



INOGENI Reference Guide – SDK Documentation – Version 2.6  4 

 

 

Table 2: HID Descriptors Supported 

DESCRIPTORS Comments 

HID descriptor HID version 1.01 
Interface descriptor - 
Endpoint descriptor Interrupt IN 64 

bytes 
Super Speed Endpoint Companion 

Descriptor 
No burst 

Report descriptor 64 bytes max 
 

The HID function can handle only ONE command at a time. As long as the last issued command 

is not completed, the function will return a BUSY answer. For more details about the format of the 

commands, see the following section. 

5. HID Connection 

This section shows how to connect to the HID device.  
INOGENI Vendor ID: 0x2997 

6.Table 3: PID of INOGENI devices 

DEVICE PID 

INOGENI DVIUSB 0x0001 
INOGENI 4K2USB3 0x0004 

INOGENI VGA2USB3 0x0009 
INOGENI SDI2USB3 0x000B 
INOGENI SHARE1 0x000D 
INOGENI SHARE2 0x000E 

INOGENI SHARE2 – REV2 0x000F 
INOGENI HD2USB3 0x0010 
INOGENI SHARE2U 0x0013 

INOGENI SHARE1 – REV2 0x0014 
INOGENI CAM300 0x0015 
INOGENI CAM200 0x0016 

 
 

 
Sample code 

/* 

 API function: HidD_GetHidGuid 

 Get the GUID for all system HIDs. 

 Returns: the GUID in HidGuid. 

 */ 

 

 HidD_GetHidGuid(&HidGuid);  

  

 /* 

 API function: SetupDiGetClassDevs 

 Returns: a handle to a device information set for all installed devices. 

 Requires: the GUID returned by GetHidGuid. 

 */ 

  

 hDevInfo=SetupDiGetClassDevs  

  (&HidGuid,  

  NULL,  

  NULL,  

  DIGCF_PRESENT|DIGCF_INTERFACEDEVICE); 

 

   

 devInfoData.cbSize = sizeof(devInfoData); 

 

 //Step through the available devices looking for the one we want.  



INOGENI Reference Guide – SDK Documentation – Version 2.6  5 

 

 

//Quit on detecting the desired device or checking all available devices without success. 

do 

{ 

  /* 

  API function: SetupDiEnumDeviceInterfaces 

  On return, MyDeviceInterfaceData contains the handle to a 

  SP_DEVICE_INTERFACE_DATA structure for a detected device. 

  Requires: 

  The DeviceInfoSet returned in SetupDiGetClassDevs. 

  The HidGuid returned in GetHidGuid. 

  An index to specify a device. 

  */ 

 

  Result=SetupDiEnumDeviceInterfaces  

   (hDevInfo,  

   0,  

   &HidGuid,  

   MemberIndex,  

   &devInfoData); 

 

  if (Result != 0) 

  { 

   //A device has been detected, so get more information about it. 

 

   /* 

   API function: SetupDiGetDeviceInterfaceDetail 

   Returns: an SP_DEVICE_INTERFACE_DETAIL_DATA structure 

   containing information about a device. 

   To retrieve the information, call this function twice. 

   The first time returns the size of the structure in Length. 

   The second time returns a pointer to the data in DeviceInfoSet. 

   Requires: 

   A DeviceInfoSet returned by SetupDiGetClassDevs 

   The SP_DEVICE_INTERFACE_DATA structure returned by SetupDiEnumDeviceInterfaces. 

    

   The final parameter is an optional pointer to an SP_DEV_INFO_DATA structure. 

   This application doesn't retrieve or use the structure.    

   If retrieving the structure, set  

   MyDeviceInfoData.cbSize = length of MyDeviceInfoData. 

   and pass the structure's address. 

   */ 

    

   //Get the Length value. 

   //The call will return with a "buffer too small" error which can be ignored. 

 

   Result = SetupDiGetDeviceInterfaceDetail  

    (hDevInfo,  

    &devInfoData,  

    NULL,  

    0,  

    &Length,  

    NULL); 

 

   //Allocate memory for the hDevInfo structure, using the returned Length. 

 

   detailData = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(Length); 

    

   //Set cbSize in the detailData structure. 

 

   detailData -> cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA); 

 

   //Call the function again, this time passing it the returned buffer size. 

 

   Result = SetupDiGetDeviceInterfaceDetail  

    (hDevInfo,  

    &devInfoData,  

    detailData,  

    Length,  

    &Required,  

    NULL); 

 

   // Open a handle to the device. 

   // To enable retrieving information about a system mouse or keyboard, 

   // don't request Read or Write access for this handle. 

 

   /* 

   API function: CreateFile 

   Returns: a handle that enables reading and writing to the device. 

   Requires: 

   The DevicePath in the detailData structure 

   returned by SetupDiGetDeviceInterfaceDetail. 

   */ 

 

   DeviceHandle=CreateFile  

    (detailData->DevicePath,  

    0,  

    FILE_SHARE_READ|FILE_SHARE_WRITE,  

    (LPSECURITY_ATTRIBUTES)NULL, 

    OPEN_EXISTING,  

    0,  

    NULL); 

 

   DisplayLastError("CreateFile: "); 

 

   /* 



INOGENI Reference Guide – SDK Documentation – Version 2.6  6 

 

 

   API function: HidD_GetAttributes 

   Requests information from the device. 

   Requires: the handle returned by CreateFile. 

   Returns: a HIDD_ATTRIBUTES structure containing 

   the Vendor ID, Product ID, and Product Version Number. 

   Use this information to decide if the detected device is 

   the one we're looking for. 

   */ 

 

   //Set the Size to the number of bytes in the structure. 

 

   Attributes.Size = sizeof(Attributes); 

 

   Result = HidD_GetAttributes  

    (DeviceHandle,  

    &Attributes); 

    

   DisplayLastError("HidD_GetAttributes: "); 

    

   //Is it the desired device? 

 

   MyDeviceDetected = FALSE; 

    

 

   if (((Attributes.VendorID == VendorID) && (Attributes.ProductID == ProductID)) || (((Attributes.VendorID == 

VendorID2) && (Attributes.ProductID == ProductID2))) 

    { 

     //Both the Vendor ID and Product ID match. 

 

     MyDeviceDetected = TRUE; 

     MyDevicePathName = detailData->DevicePath; 

     DisplayData("Device detected"); 

 

     //Register to receive device notifications. 

 

     RegisterForDeviceNotifications(); 

 

     //Get the device's capablities. 

 

     GetDeviceCapabilities(); 

 

 

      

     // Get a handle for writing Output reports. 

 

     WriteHandle=CreateFile  

      (detailData->DevicePath,  

      GENERIC_WRITE,  

      FILE_SHARE_READ|FILE_SHARE_WRITE,  

      (LPSECURITY_ATTRIBUTES)NULL, 

      OPEN_EXISTING,  

      0,  

      NULL); 

 

     DisplayLastError("CreateFile: "); 

 

     // Prepare to read reports using Overlapped I/O. 

 

     PrepareForOverlappedTransfer(); 

 

    } //if (Attributes.ProductID == ProductID) 

 

    else 

     //The Product ID doesn't match. 

 

     CloseHandle(DeviceHandle); 

 

   } //if (Attributes.VendorID == VendorID) 

 

   else 

    //The Vendor ID doesn't match. 

 

    CloseHandle(DeviceHandle); 

 

  //Free the memory used by the detailData structure (no longer needed). 

 

  free(detailData); 

 

  }  //if (Result != 0) 

 

  else 

   //SetupDiEnumDeviceInterfaces returned 0, so there are no more devices to check. 

 

   LastDevice=TRUE; 

 

  //If we haven't found the device yet, and haven't tried every available device, 

  //try the next one. 

 

  MemberIndex = MemberIndex + 1; 

 

 } //do 

 

 while ((LastDevice == FALSE) && (MyDeviceDetected == FALSE)); 

 



INOGENI Reference Guide – SDK Documentation – Version 2.6  7 

 

 

After the code above find the HID device we will be able to write 64 bytes report with the device 

handle.  

Here is also a sample code that can be used with libusb-1.0 library. This library is compatible 

with Windows, OSX and Linux.  

#include "libusb-1.0/libusb.h" 

 

int Connect(void) 

{ 

    

   libusb_device **list = NULL; 

   static const int INOGENI_VENDOR_ID = 0x2997; 

   static const int INOGENI_VIDYO_PRODUCT_ID = 0x0002; 

   static const int INOGENI_PRODUCT_ID = 0x0001; 

   int device_ready = 0; 

   int result; 

   int rc = 0; 

   size_t idx =0; 

   ssize_t count = 0; 

   struct inogeni_hid_command command; 

   int i = 0; 

  

   rc = libusb_init(&context); 

   if(rc != 0) 

   { 

      printf("error\n"); 

      return rc; 

   } 

 

   count = libusb_get_device_list(context, &list); 

   if(!(count > 0)) 

   { 

      printf("error\n"); 

      return LIBUSB_ERROR_NO_DEVICE; 

    } 

 

    for (idx = 0; idx < count; ++idx)  

    { 

      libusb_device *device = list[idx]; 

        

struct libusb_device_descriptor desc = {0}; 

        rc = libusb_get_device_descriptor(device, &desc); 

        if(rc != 0) 

 { 

    printf("error\n"); 

    return rc; 

 } 

 

       // printf("Vendor:Device = %04x:%04x\n", desc.idVendor, desc.idProduct); 

       if ((desc.idVendor == INOGENI_VENDOR_ID) && ((desc.idProduct == INOGENI_VIDYO_PRODUCT_ID) 

|| 

      (desc.idProduct == INOGENI_PRODUCT_ID)) )  

       { 

          //  printf("INOGENI HDMI/DVI-2-USB3 device found!\n"); 

   result = libusb_open(device, &devh); 

   if (result) 

   { 

     printf("Error opening the device = %X\n", result); 

     return result; 

   } 

       } 

   } 

 

   // Change these as needed to match idVendor and idProduct in your device's device descriptor. 

   if (devh != NULL) 

   { 

      // The HID has been detected. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  8 

 

 

      // Detach the hidusb driver from the HID to enable using libusb. 

      libusb_detach_kernel_driver(devh, INTERFACE_NUMBER); 

      { 

   result = libusb_claim_interface(devh, INTERFACE_NUMBER); 

   if (result >= 0) 

   { 

    device_ready = 1; 

   } 

   else 

   { 

    fprintf(stderr, "libusb_claim_interface error %d\n", result); 

   } 

      } 

   } 

   else 

   { 

      fprintf(stderr, "No INOGENI HDMI/DVI-2-USB3 device found!\n"); 

      return LIBUSB_ERROR_NO_DEVICE; 

   } 

   if (device_ready) 

   { 

     return 0; 

   } 

  

   return LIBUSB_ERROR_NO_DEVICE; 

} 

 

7. HID Communication  

This section shows how to communicate to the HID device.  
 
To send a command to the USB3 dongle use the WriteFile: 
 
Result = WriteFile (WriteHandle, OutputReport, 

Capabilities.OutputReportByteLength, &BytesWritten, NULL); 

The OutputReportByteLength is 64 bytes. 

The content of OutputReport is the command sent to the Dongle, please see next section for 

more detail. 

To get the answer to the command: 

Result = HidD_GetInputReport( ReadHandle, 

InputReport, 

Capabilities.InputReportByteLength); 

This command is from the hid.dll. 

The InputReportByteLength is 64 bytes like the output report length. 

 

If you want to use the libusb-1.0 library, here are the basic functions for HID communication. 

 

int SendReport(unsigned char *Data) 

{ 



INOGENI Reference Guide – SDK Documentation – Version 2.6  9 

 

 

 int bytes_received; 

 int bytes_sent; 

 int i = 0; 

 int result = 0; 

 //char data_out[INOGENI_REPORT_LEN]; 

 

 // Send data to the device. 

 bytes_sent = libusb_control_transfer( 

   devh, 

   CONTROL_REQUEST_TYPE_OUT , 

   HID_SET_REPORT, 

   (HID_REPORT_TYPE_OUTPUT<<8)|0x00, 

   INTERFACE_NUMBER, 

   Data, 

   INOGENI_REPORT_LEN, 

   TIMEOUT_MS); 

 

 

 if (bytes_sent >= 0) 

 { 

#ifdef DEBUG_DISPLAY_RX_TX 

   printf("Output report data sent:\n"); 

   for(i = 0; i < 64; i++) 

   { 

    printf("%02x ",Data[i]); 

   } 

   printf("\n"); 

#endif //DEBUG_DISPLAY_RX_TX 

 } 

 else 

 { 

  fprintf(stderr, "Error sending Input report %d\n", result); 

  return result; 

 } 

 

 return 0; 

 } 

 

The Input Report Byte Length is also 64 bytes and he can be obtained from the dongle with for 

example the following code: 

int ReceiveReport(unsigned char *Data) 

{ 

 int bytes_received; 

 int bytes_sent; 

 int i = 0; 

 int result = 0; 

  

 

 // Request data from the device. 

 bytes_received = libusb_control_transfer( 

   devh, 

   CONTROL_REQUEST_TYPE_IN , 

   HID_GET_REPORT, 

   (HID_REPORT_TYPE_INPUT<<8)|0x00, 

   INTERFACE_NUMBER, 

   Data, 

   INOGENI_REPORT_LEN, 

   TIMEOUT_MS); 

 

 if (bytes_received >= 0) 

 { 

    

#ifdef DEBUG_DISPLAY_RX_TX 

  printf("Input report data received:\n"); 

  for(i = 0; i < bytes_received; i++) 

  { 

   printf("%02x ", Data[i]); 

  } 

  printf("\n"); 



INOGENI Reference Guide – SDK Documentation – Version 2.6  10 

 

 

 

#endif //DEBUG_DISPLAY_RX_TX 

 } 

 else 

 { 

  fprintf(stderr, "Error receiving Input report %d\n", result); 

  return result; 

 } 

  

 

 return 0; 

 } 

 

8. Commands Format 

The Host exchange 64-bit report with the dongle. This section describes the message in 

exchange between the host and the dongle. 

The following table indicates the general format of an HID command from the host to the 

dongle. 

Table 4: General Command Format 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

0 CMD_INDEX 
1 CMD_ID 
2 DATA_LENGTH 
3 DATA0 

(OPTIONAL) 
4 DATA1 

(OPTIONAL) 
5 … 
… … 
63 DATA63 

(OPTIONAL) 
 

The answer receives from the dongle in case of success will have the following format: 

Table 5: General Answer Format (Successful) 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

0 CMD_INDEX 
1 CMD_ID 
2 DATA_LENGTH 
3 ACK = 0x00 
4 DATA0 

(OPTIONAL) 
5 … 
… … 
63 DATA62 

(OPTIONAL) 



INOGENI Reference Guide – SDK Documentation – Version 2.6  11 

 

 

 

 

However, if the command to the dongle failed you will receive the following answer type. 

Table 6: General Answer Format (Fail) 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

0 CMD_INDEX 
1 CMD_ID 
2 DATA_LENGTH 
3 ERROR_CODE 

 

The following table presents all possible command ID. 

Table 7: Commands ID 

COMMANDS ID (8 
bits) 

I2C_WR 0x00 
I2C_RD 0x01 
SPI_WR 0x02 
SPI_RD 0x03 

SPI_ERASE 0x04 
SET_BOOTLOADER 0x05 

FPGA_WR 0x06 
FPGA_RD 0x07 

DEBUG_WR 0x08 
DEBUG_RD 0x09 
UART_WR 0x0A 
UART_RD 0x0B 
SDI_WR 0x0C 
SDI_RD 0x0D 

DESCR_WR 0x0E 
DESCR_RD 0x0F 

 

Then the possible return code from the dongle. 

Table 8: Error Code 

BYTES 
INDEX 

BYTES DESCRIPTION 

0x00 ACK 
0x01 BUSY 
0x02 BAD_CMD_NUM 
0x03 BAD_LENGTH 
0x04 BAD_ADDRESS 
0x05 TOO_BAD 
0x06 BAD_DATA_LEN 



INOGENI Reference Guide – SDK Documentation – Version 2.6  12 

 

 

0x07 SPI_FAIL 
0x08 I2C_NO_ANSWER 
0x09 I2C_COMM_FAILED 
0X0A NOT_SUPPORTED 
0x0B ACCESS_NOT_SUPPORTED 
0x0C FPGA_NOT_CONFIGURED 

 

When the host received a busy, it should wait a little bit and try again. 

About the Message ID 

The message ID is 8 bits counter incremented at each new command sent by the host. 

The same index will be returned with the corresponding answer on the USB bus. The accepted 

range index from the host is 1-0xFF. The 0x00 code index is reserved for any “interrupt packets” 

used to signal a specific update from the device to the host. 

Accessible Registers and commands 
This section introduces all available command and register. 

I2C Commands 
Table 9: I2C Write Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x00 
2 LENGTH 0x03-3A 
3 I2C_ADDR 0 - 0xFF 
4 I2C_REG 0 - 0xFF 
5 I2C_DATA0 0 - 0xFF 
… … … 
n I2C_DATAn 0 - 0xFF 

 

Table 10: I2C Read Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x01 
2 LENGTH 0x03 
3 I2C_ADDR 0 - 0xFF 
4 I2C_REG 0 - 0xFF 
5 I2C_LEN 0x01 – 0x3B 

 

Table 11: I2C Read Answer 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 



INOGENI Reference Guide – SDK Documentation – Version 2.6  13 

 

 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x01 
2 LENGTH 0x02-0X3B 
3 ACK 0x00 
4 I2C_DATA 0 - 0xFF 

 

SPI Commands 
Table 12: SPI Write Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x02 
2 LENGTH 0x05-0x3C 
3 SPI_DEV 0x00 
4 SPI_ADDR[16:23] 0 - 0xFF 
5 SPI_ADDR[8:15] 0 - 0xFF 
6 SPI_ADDR[0:7] 0 - 0xFF 
7 SPI_DATA0 0 - 0xFF 
… … … 
n SPI_DATAn 0 - 0xFF 

 

Table 13: SPI Read Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x03 
2 LENGTH 0x05 
3 SPI_DEV 0x00 
4 SPI_ADDR[16:23] 0 - 0xFF 
5 SPI_ADDR[8:15] 0 - 0xFF 
6 SPI_ADDR[0:7] 0 - 0xFF 
7 SPI_LEN 0x01-0x3A 

 

Table 14: SPI Erase Sector Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x04 
2 LENGTH 0x02 
3 SPI_DEV 0x00 
4 SECTOR 0 - 0xFF 

 

  



INOGENI Reference Guide – SDK Documentation – Version 2.6  14 

 

 

Table 15: SPI Read Answer 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x03 
2 LENGTH 0x02-0x3C 
3 ACK 0x00 
4 SPI_DATA 0 - 0xFF 

 

FPGA Commands 
Table 16: FPGA Write Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x06 
2 LENGTH 0x03-0x3D 
3 CONTROL 0 - 0xFF 
4 ADDRESS 0 - 0xFF 
5 FPGA_DATA0 0 - 0xFF 
… … … 
n FPGA_DATAn 0 - 0xFF 

 

Table 17: FPGA Read Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0 
2 LENGTH 0x07 
3 CONTROL 0 - 0xFF 
4 ADDRESS 0 - 0xFF 
5 DATA_LEN 0x01-0x3A 

 

Table 18: FPGA Read (0x09) and FPGA write (0x08) Answer 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x06-0x07 
2 LENGTH 0x02-3D 
3 ACK 0x00 
4 FPGA_DATA0 0 - 0xFF 
… … … 
n FPGA_DATAn 0 - 0xFF 

  



INOGENI Reference Guide – SDK Documentation – Version 2.6  15 

 

 

FX3 Commands 
Table 19: Debug Write Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x08 
2 LENGTH 0x03 
3 ADDR 0 - 0xFF 
4 DATA 0 - 0xFF 

 

Table 20: Debug Read Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x09 
2 LENGTH 0x01 
3 REG 0 - 0xFF 

 

Table 21: Debug Read Answer 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x01 
2 LENGTH 0x02 
3 ACK 0x00 
4 DATA 0x00 - 0xFF 

 

UART Commands 

Command set only available for SHARE2/SHARE2U and CAM series devices. 

Table 22: UART Write Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0A 
2 LENGTH 0x03-0x3D 
3 CONTROL 0 - 0xFF 
4 ADDRESS 0 - 0xFF 
5 FPGA_DATA0 0 - 0xFF 
… … … 
n FPGA_DATAn 0 - 0xFF 

 

Table 23: UART Read Command 



INOGENI Reference Guide – SDK Documentation – Version 2.6  16 

 

 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0B 
2 LENGTH 0x07 
3 CONTROL 0 - 0xFF 
4 ADDRESS 0 - 0xFF 
5 DATA_LEN 0x01-0x3A 

 

Table 24: UART Read (0x0B) and UART Write (0x0A) Answer 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0A-0x0B 
2 LENGTH 0x02-3D 
3 ACK 0x00 
4 FPGA_DATA0 0 - 0xFF 
… … … 
n FPGA_DATAn 0 - 0xFF 

 

Descriptor Commands 

Descriptor commands allow you to burn a device description inside the embedded flash in order 

to easily identify the connected hardware. 

Table 25: Descriptor Write Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0E 
2 LENGTH 0x03-0x3D 
3 CONTROL 0 - 0xFF 
4 ADDRESS 0 - 0xFF 
5 FPGA_DATA0 0 - 0xFF 
… … … 
n FPGA_DATAn 0 - 0xFF 

 

Table 26: Descriptor Read Command 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0F 
2 LENGTH 0x07 
3 CONTROL 0 - 0xFF 
4 ADDRESS 0 - 0xFF 
5 DATA_LEN 0x01-0x3A 

 



INOGENI Reference Guide – SDK Documentation – Version 2.6  17 

 

 

Table 27: Descriptor Read (0x0F) and Descriptor Write (0x0E) Answer 

BYTES 
INDEX 

BYTES 
DESCRIPTION 

VALUE 

0 CMD_INDEX 1 - 0xFF 
1 CMD_ID 0x0E-0x0F 
2 LENGTH 0x02-3D 
3 ACK 0x00 
4 FPGA_DATA0 0 - 0xFF 
… … … 
n FPGA_DATAn 0 - 0xFF 

 

FX3 Registers 
Table 28: FX3 Registers 

Register 
Index 

Description Access Device 
support 

0x00 INOGENI Firmware Version Major Read only ALL 

0x01 INOGENI Firmware Version Minor Read only ALL 

0x02 EEPROM (0 = M25P40 or 1 = M25P80) Read only ALL 

0x03 FPGA version Read only ALL 

0x04 Reserved Read/Write ALL 

0x05 First Video Width MSB Read only ALL 

0x06 First Video Width LSB Read only ALL 

0x07 First Video Height MSB Read only ALL 

0x08 First Video Height LSB Read only ALL 

0x09 First Video Frame Rate*100 MSB Read only ALL 

0x0A First Video Frame Rate*100 LSB Read only ALL 

0x0B First Video General Read only ALL 

0x0C EDID Version Read only ALL 

0x0D USB speed Read only ALL 



INOGENI Reference Guide – SDK Documentation – Version 2.6  18 

 

 

0x0E Second Video Width MSB Read only SHARE1 
SHARE2 

0x0F Second Video Width LSB Read only SHARE1 
SHARE2 

0x10 Second Video Height MSB Read only SHARE1 
SHARE2 

0x11 Second Video Height LSB Read only SHARE1 
SHARE2 

0x12 Second Video Frame Rate*100 MSB Read only SHARE1 
SHARE2 

0x13 Second Video Frame Rate*100 LSB Read only SHARE1 
SHARE2 

0x14 Second Video General Read only SHARE1 
SHARE2 

 

The bit 0 of the General register is a video input valid. Before decoding the register 0x05 to 0x08 

the host should verify that bit 0 is 1 to indicate valid video input. The bi-t 1 of the General register 

indicates if the FPGA is configured, for normal operation this bit must high. At boot up this bit will 

be 0, as the device is configured the bit will turn 1. The device cannot stream video when the bit 

is 0. The FPGA version major is bit 4 to 7 and the minor version is bit 0 to 3. Register 0x04 allow 

to disabled process and module in the FX3 and to check if the FPGA is active. The Register 0x02 

is now obsolete. 

9. Devices Version 

All hardware in the INOGENI device have a version that can be retrieved from HID command. 

Before updating a device with a new firmware, bit stream or EDID it is good practice to verify the 

current version to determine if the device needs to be updated. If the device already has the good 

version, there is no need to proceed with the update. 

It is also a good validation to read all the devices version after an update to verify that the update 

was successful. However, remember the device take the new firmware, bit stream and EDID only 

the next reboot after the update. 

FX3 Version 

The FX3 version is located at register 0x00 and 0x01. Those register can be get from the HID 

commands get FX3 register (see Table 20: Debug Read Command). The get FX3 register does 

not support the get of more than one register in one command, so to HID command are necessary 

to get the FX3 version. 

Get the FX3 INOGENI Firmware Version Major: 

TX: 01 09 01 00 00 00 … 00 (total 64 bytes) 

Command ID = 0x01 (any value from 0x01 to 0xFF) 

Read FX3 register = 0x09 



INOGENI Reference Guide – SDK Documentation – Version 2.6  19 

 

 

Len = 0x01 

Register = 0x00 = FX3 version major register 

Then wait for an answer: 

RX: 01 09 02 00 01 00 … 00 (total 64 bytes) 

Command ID = 0x01, so this is an answer to our request  

Read FX3 register = 0x09, so this is an answer to a get FX3 register 

Len = 0x02 (ACK + Register value) 

Register = 0x00 = ACK 

DATA = FX3 major version = 0x01  

 

Get the FX3 INOGENI Firmware Version Minor: 

TX: 02 09 01 01 00 00 … 00 (total 64 bytes) 

Command ID = 0x02 (any value from 0x01 to 0xFF) 

Read FX3 register = 0x09 

Len = 0x01 

Register = 0x01 = FX3 version minor register 

Then wait for an answer: 

RX: 02 09 02 00 35 00 … 00 (total 64 bytes) 

Command ID = 0x02, so this is an answer to our request  

Read FX3 register = 0x09, so this is an answer to a get FX3 register 

Len = 0x02 (ACK + Register value) 

Register = 0x00 = ACK 

DATA = FX3 minor version = 0x35 

 

FPGA Version 

The FPGA take 5 to 7 seconds longer to boot up than the FX3. The bit 1 in the FX3 Register 

(0x04) indicates if the FPGA has finish to boot up. You should not request the FPGA version until 

bit 1 is high. 

Get FX3 General 0x04 register 

TX: 58 09 01 04 00 … 00 (total 64 bytes) 

Command ID = 0x58 (any value from 0x01 to 0xFF) 

Get FX3 Register command = 0x09 

Len = 0x01 

Register = 0x04 = the General register 

The dongle answer: 

RX: 58 09 02 00 02… 

Command ID = 0x58 (the same than our request indicating an answer to that request…) 

Get FX3 Register command = 0x09 (the same than our request indicating an answer to that request…) 



INOGENI Reference Guide – SDK Documentation – Version 2.6  20 

 

 

Len = 0x02 

Result Code = 0x00 = Acknowledge 

Register value = 0x02 = the General register bit 1 is high then the FPGA is loaded! 

 

The FPGA version is located at register FX3 register 0x03. That register can be get from the HID 

command get FX3 register (see Table 20: Debug Read Command). 

Get the FPGA version: 

TX: 03 09 01 03 00 00 … 00 (total 64 bytes) 

Command ID = 0x03 (any value from 0x01 to 0xFF) 

Read FX3 register = 0x09 

Len = 0x01 

Register = 0x03 = FPGA version register. 

Then wait for an answer: 

RX: 03 09 02 00 01 00 … 00 (total 64 bytes) 

Command ID = 0x03, so this is an answer to our request  

Read FX3 register = 0x09, so this is an answer to a get FX3 register 

Len = 0x02 (ACK + Register value) 

Register = 0x00 = ACK 

DATA = 0x22 = FPGA Version 2.2  

The FPGA version is on one byte, the 4 most significant bit is consider as the major and the 4 

less significant bits is consider as the minor. 

EDID Version 

The EDID version is located at FX3 register 0x0C. That register can be get from the HID command 

get FX3 register (see Table 20: Debug Read Command). 

Example: Get EDID version: 

TX: 04 09 01 0C 00 00 … 00 (total 64 bytes) 

Command ID = 0x04 (any value from 0x01 to 0xFF) 

Read FX3 register = 0x09 

Len = 0x01 

Register = 0x0C = EDID version 

 

Then wait for an answer: 

RX: 04 09 02 00 04 00 … 00 (total 64 bytes) 

Command ID = 0x04 (any value from 0x01 to 0xFF) 

Read FX3 register = 0x09 

Len = 0x02 (ACK + Register value) 

Register = 0x00 = ACK 

DATA = EDID version = 0x04 (EDID version 4) 



INOGENI Reference Guide – SDK Documentation – Version 2.6  21 

 

 

10. Firmware Update 

To update the INOGENI firmware, bit stream and EDID you need to update the binaries code in 

the device EEPROM. After updating the EEPROM with the new code, you will need to reboot the 

dongle before the firmware update take effect. 

The previous sections show you how to access to the dongle, using those HID commands we will 

update the device firmware.  

Before starting the software update of the device make sure it is not streaming video or audio. 

Before you can write a new binary in the device EEPROM, you need to erase the current content. 

SeeSPI Commands for more details.  

The erase command is erasing a full sector at one time. A sector for the EEPROM is 64KB, and 

there are 16 sectors. The figure below indicates the sector use by the FX3, FPGA and the EDID. 

 

Figure 1 - EEPROM Memory Mapping 

FX3 Firmware Update 

Before Starting the update of the dongle EEPROM make sure that the dongle is not streaming 

video or audio. The new firmware for the FX3 is provided by INOGENI as an .img binary file. The 

FX3 is located in the first 3 sectors of the EEPROM. Those 3 sectors must be erased before any 

data can be written in the EEPROM. You can erase one sector in the EEPROM using the 

command found in Table 14: SPI Erase Sector Command. 

Example of one command to erase the sector 2: 

TX: 01 04 02 00 02 00 … 00 (total 64 bytes) 

Sector Start Address End Address Content

0 0x00000 0x0FFFF

1 0x10000 0x1FFFF

2 0x20000 0x2FFFF

3 0x30000 0x3FFFF

4 0x40000 0x4FFFF

5 0x50000 0x5FFFF

6 0x60000 0x6FFFF

7 0x70000 0x7FFFF

8 0x80000 0x8FFFF

9 0x90000 0x9FFFF

10 0xA0000 0xAFFFF

11 0xB0000 0xBFFFF

12 0xC0000 0xCFFFF

13 0xD0000 0xDFFFF

14 0xE0000 0xEFFFF Reserved

15 0xF0000 0xFFFFF EDID

FX3

FPGA



INOGENI Reference Guide – SDK Documentation – Version 2.6  22 

 

 

Command ID = 0x01 (any value from 0x01 to 0xFF) 

Erase sector command = 0x04 

Len = 0x02 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Sector = 0x02 = Erase sector 2 (last sector of FX3) 

Then wait for an answer. 

RX: 01 04 01 00 … 00 

Command ID = 0x01 same than our request, that tell us this an answer to our request. 

Erase sector command = 0x04, so this answer to an erase sector. 

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

You must wait 3 seconds after each erase command to let the SPI EEPROM time to execute 

the command. 

After you successfully erase the sector 0 to 2, you can start programming the FX3 in the EEPROM 

from the data of the .img file. The write of data to EEPROM is done using the command of Table 

12: SPI Write Command. 

Example of the command to program address 0x20100: 

TX: 02 02 3C 00 02 01 00 XX … YY (total 64 bytes) 

Command ID = 0x02 (any value from 0x01 to 0xFF) 

Write to EEPROM command = 0x02 

Len = 0x3C 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x02 

Address [15:8] = 0x01 

Address [7:0] (LSB) = 0x00 

Address = 0x20100 

XX … YY = Data 56 bytes 

Then wait for an answer. 

RX: 02 02 01 00 … 00 

Command ID = 0x02 same than our request, that tell us this an answer to our request. 

Write to EEPROM command = 0x02, so this an answer to a write SPI  

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

So you need to program the whole .img file data into the EEPROM starting at address 0x00000 

until the end of the file. You should always use to send write command of the maximum size of 

56 bytes, except for the last write command. The figure below illustrates the flow chart for the FX3 

update. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  23 

 

 

Start

Stop Audio and 

Video Capture

SPI Erase Sector 0 

to 2

ErrorEnd
Yes

Open FX3 .img file.

Set Address = 

0x000000

Error

No

Yes

Read up-to 56 bytes 

from file.

Set Len = number 

of bytes read

No

Error
Yes

Write Len bytes 

read from file to 

EEPROM at 

Address

Error

Yes

Add Len to Address 

value

No

Len > 0

No

Yes

No

 

Figure 2 - FX3 Update Flow 

To complete the FX3 firmware update a reboot will be necessary. However before performing a 

reboot you should complete the update of all part of the dongle first.  If the FX3 reboots with a 

corrupted EEPROM it will boot in bootloader mode (see  Bootloader section). 



INOGENI Reference Guide – SDK Documentation – Version 2.6  24 

 

 

FPGA Bit stream Update 

Before Starting the update of the dongle EEPROM make sure that the dongle is not streaming 

video or audio. We also need to stop the FX3 FPGA auto-configuration feature before we start 

updating the EEPROM with the new bit stream. This can be done by setting one bit in the FX3 

General register 0x04. However, as we want to affect only one bit we start by getting the value of 

the register (see Table 20: Debug Read Command): 

Get FX3 General 0x04 register 

TX: 59 09 01 04 00 … 00 (total 64 bytes) 

Command ID = 0x59 (any value from 0x01 to 0xFF) 

Get FX3 Register command = 0x09 

Len = 0x01 

Register = 0x04 = the General register 

The dongle answer: 

RX: 59 09 02 00 02 … 

Command ID = 0x59 (the same than our request indicating an answer to that request…) 

Get FX3 Register command = 0x09 (the same than our request indicating an answer to that request…) 

Len = 0x02 

Result Code = 0x00 = Acknowledge 

Register value = 0x02 = the General register 

To stop the FPGA download we need to set bit 0 and leave all other bit at the same value: 

Register General must be = 0x03 

 Let’s do a set FX3 register command to set the register to this new value (see Table 19: Debug 

Write Command): 

Set FX3 General Register (0x04) to 0x03 

TX: 5A 08 02 04 03 … 00 (total 64 bytes) 

Command ID = 0x5A (any value from 0x01 to 0xFF) 

Set FX3 Register command = 0x08 

Len = 0x02 

Register = 0x04 = the enable register 

Register value = 0x03 

Then wait for an answer. 

RX: 5A 08 01 00 … 00 

Command ID = 0x5A same than our request, that tell us this an answer to our request. 

Set FX3 Register command = 0x08, so this answer to an Set FX3 register. 

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

The new FPGA bit stream for the device is provided by INOGENI binary file. The FPGA is located 

in sector from 3 to 13 of the EEPROM (see Figure 1 - EEPROM Memory Mapping). Every sector 



INOGENI Reference Guide – SDK Documentation – Version 2.6  25 

 

 

that will be used to hold the new bit stream must be erased before any data can be written in the 

EEPROM. You can erase one sector using the command found in Table 14: SPI Erase Sector 

Command. 

Example of one command to erase the sector 3: 

TX: 01 04 02 00 03 00 … 00 (total 64 bytes) 

Command ID = 0x01 (any value from 0x01 to 0xFF) 

Erase sector command = 0x04 

Len = 0x02 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Sector = 0x03 = Erase sector 3 (first sector for the FPGA) 

Then wait for an answer. 

RX: 01 04 01 00 … 00 

Command ID = 0x01 same than our request, that tell us this an answer to our request. 

Erase sector command = 0x04, so this answer to an erase sector. 

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

You must wait 3 seconds after each erase command to let the SPI EEPROM time to execute the 

command. 

After you successfully erase the FPGA sectors, you need to write FPGA bit stream size with a 

checksum at address 0x30000. The size of the FPGA bit stream is equal to the .bit file size, so 

the number of byte inside the bit file. The size of the bit stream is an unsigned on 32-bit. The 

checksum is on one byte, so the five first byte of the FPGA section are reserved for the size. 

Additionally, the first 256 byte (0x00-0xFF) are reserved for the bit stream size, so the next 251 

byte are left empty: 

 

Figure 3 - FPGA EEPROM Size Section 

The size must be written to the 4 first byte of the sector: 

Address Content

0x30000 Size [0:7] (LSB )

0x30001 Size [8:15]

0x30002 Size [16:23]

0x30003 Size [24:31] (MSB )

0x30004 Check Sum

0x30005

…

…

0x30100 Start Of the bit stream

… …

… …

Blank



INOGENI Reference Guide – SDK Documentation – Version 2.6  26 

 

 

buffer[0] = (u8)(FileSize & 0xFF); 

buffer[1] = (u8)((FileSize & 0xFF00) >> 8); 

buffer[2] = (u8)((FileSize & 0xFF0000) >> 16); 

buffer[3] = (u8)((FileSize & 0xFF000000) >> 24); 
 
 

The checksum is computed from the 4 byte of the size: 

for (i = 0; i < 4; i++) 

{ 

checksum += buffer[i]; 

} 

checksum = ((256 - checksum) % 256); 

buffer[4] = checksum; 
 

Then the size can be written in the EEPROM using the write SPI command at address 0x30000: 
 

TX: 0A 02 3C 00 03 00 00 AA BB CC DD EE 00 … 00 (total 64 bytes) 

Command ID = 0x0A (any value from 0x01 to 0xFF) 

Write to EEPROM command = 0x02 

Len = 0x3C 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x03 

Address [15:8] = 0x00 

Address [7:0] (LSB) = 0x00 

Address = 0x30000 

AA = Buffer[0] 

BB = Buffer[1] 

CC = Buffer[2] 

DD = Buffer[3] 

EE = Buffer[4] 

Then wait for an answer. 

RX: 0A 02 01 00 … 00 

Command ID = 0x0A same than our request, that tell us this an answer to our request. 

Write to EEPROM command = 0x02, so this an answer to a write SPI  

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

You can start programming the FPGA in the EEPROM from the data of the bit file. You start with 

the first 56 bytes of the file at address 0x30100. The write of data to EEPROM is done using the 

command of Table 12: SPI Write Command. 

Example: Write the first 56 bytes at address 0x30100: 

TX: 02 02 3C 00 03 01 00 XX … YY (total 64 bytes) 

Command ID = 0x02 (any value from 0x01 to 0xFF) 

Write to EEPROM command = 0x02 

Len = 0x3C 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x03 

Address [15:8] = 0x01 



INOGENI Reference Guide – SDK Documentation – Version 2.6  27 

 

 

Address [7:0] (LSB) = 0x00 

Address = 0x30100 

XX … YY = Data 56 bytes 

Then wait for an answer. 

RX: 02 02 01 00 … 00 

Command ID = 0x02 same than our request, that tell us this an answer to our request. 

Write to EEPROM command = 0x02, so this an answer to a write SPI  

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

So you need to program the whole bit file data into the EEPROM starting at address 0x30100 

until the end of the file. You should always use to send write command of the maximum size of 

56 bytes, except for the last write command. The figure below illustrates the flow chart for the 

FPGA update. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  28 

 

 

Start

Stop Audio and 

Video Capture

SPI Erase Sector 3 

to 13

Error

End

Yes

Open FPGA .bit file.

Set Address = 

0x30000

Error

NoYes

Read up-to 56 bytes 

from file.

Set Len = number 

of bytes read

Error
Yes

Write Len bytes 

read to EEPROM at 

Address

Error

Yes

Add Len to Address 

value

No

Len > 0

No

Yes

No

Stop FPGA 

Download (HID 

Command)

Write To EEPROM 

Address the Total 

size file with check 

sum

No

Add 256 to Adress 

(Address=0x30100)

 

Figure 4 - FPGA Update Flow 

 

To complete the FPGA bit stream update a reboot will be necessary. However before performing 

a reboot you should complete the update of all part of the dongle first.  Note that a get FX3 version 

command before rebooting will not return the new version number as the FX3 is still using the 

previous code, as it is loaded into RAM memory at boot up by the device bootloader. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  29 

 

 

EDID Update 

The FX3 dynamically modify bytes in the EDID, as result you cannot change the EDID or put any 

EDID in the device. Actually you cannot even use older version or newer version (newer than the 

FX3 version). You must use the EDID file included in the FX3 software package otherwise the 

EDID might be invalid and then audio source and video source will reject the dongle and not 

output any stream to it or use incorrect configuration (such as an unsupported color space). 

Before Starting the update of the dongle EEPROM make sure that the dongle is not streaming 

video or audio. The new EDID for the dongle is provided by INOGENI as a .bin binary file. The 

EDID is located in the sector 15 of the EEPROM at address 0xFEF00. The sector 15 must be 

erased before any data can be written in the EDID section of the EEPROM. You can erase one 

sector in the EEPROM using the command found in Table 14: SPI Erase Sector Command. 

Example: Erase the sector 15: 

TX: 10 04 02 00 0F 00 … 00 (total 64 bytes) 

Command ID = 0x10 (any value from 0x01 to 0xFF) 

Erase sector command = 0x04 

Len = 0x02 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Sector = 0x0F = Erase sector 15 (last sector of EEPROM) 

Then wait for an answer. 

RX: 10 04 01 00 … 00 

Command ID = 0x10 same than our request, that tell us this an answer to our request. 

Erase sector command = 0x04, so this answer to an erase sector. 

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

You must wait 3 seconds after each erase command to let the SPI EEPROM time to execute 

the command. 

After you successfully erase the sector 15, you can start programming the EDID in the EEPROM 

from the data of the .BIN file. The write of data to EEPROM is done using the command of Table 

12: SPI Write Command. 

Example: Write SPI EEPROM EDID at address 0xFEF00: 

TX: 11 02 3C 00 0F EF 00 XX … YY (total 64 bytes) 

Command ID = 0x11 (any value from 0x01 to 0xFF) 

Write to EEPROM command = 0x02 

Len = 0x3C 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x0F 

Address [15:8] = 0xEF 

Address [7:0] (LSB) = 0x00 

Address = 0xFEF00 

XX … YY = Data 56 bytes 



INOGENI Reference Guide – SDK Documentation – Version 2.6  30 

 

 

Then wait for an answer. 

RX: 11 02 01 00 … 00 

Command ID = 0x11 same than our request, that tell us this an answer to our request. 

Write to EEPROM command = 0x02, so this an answer to a write SPI  

Len = 0x01     so will follow: 1 result code  

Result Code =0x00 this an ACK 

So you need to program the whole 256 bytes of the EDID file data into the EEPROM starting at 

address 0xFEF00 until the end of the file. You should always use to send write command of the 

maximum size of 56 bytes, except for the last write command. The figure below illustrates the 

flow chart for the EDID update. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  31 

 

 

Start

Stop Audio and 

Video Capture

SPI Erase Sector 

15

ErrorEnd
Yes

Open EDID .BIN 

file.

Set Address = 

0xFEF00

Error

No

Yes

Read up-to 56 bytes 

from file.

Set Len = number 

of bytes read

No

Error
Yes

Write Len bytes 

read to EEPROM at 

Address

Error

Yes

Add Len to Address 

value

No

Len > 0

No

Yes

No

 

Figure 5 - EDID Update Flow 

To complete the EDID update a reboot will be necessary. However, before performing a reboot 

you should complete the update of all part of the dongle first.  



INOGENI Reference Guide – SDK Documentation – Version 2.6  32 

 

 

FX3 Validation 

An optional step is to read back all data from the EEPROM and to compare it to the data from the 

.img file. This step insure that no error occur in the EEPROM update. The principle is simple: read 

all data in the FX3 reserved sectors and compare it to the FX3 .img file. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  33 

 

 

Start

Stop Audio and 

Video Capture

End

Open FX3 .img file.

Set Address = 

0x000000

Error

No

Yes

Read up-to 59 bytes 

from file.

Set Len = number 

of bytes read

Error
Yes

Error
Yes

Add Len to Address 

value

Yes

Read Len bytes 

from EEPROM at 

Address

Compare the bytes 

read from file and 

the bytes read from 

EEPROM

No

Is one or more byte 

different

Len > 0

No

No

Yes

No

 

Figure 6 – FX3 Validation Flow 



INOGENI Reference Guide – SDK Documentation – Version 2.6  34 

 

 

You simply start at address 0x00000 and verify each byte in the EEPROM is the same than the 

byte in the file at the corresponding offset. If any byte is different the validation has failed and the 

FX3 need to be updated from the start immediately. If the FX3 reboots with a corrupted EEPROM 

it will boot in bootloader mode (see section on  Bootloader to see how to handle this case).  

The only HID command needed is the read SPI (see Table 13: SPI Read Command): 

Example: Read 59 byte at address 0x10100: 

TX: 11 03 05 00 01 01 00 3B … YY (total 64 bytes) 

Command ID = 0x11 (any value from 0x01 to 0xFF) 

Read from EEPROM command = 0x03 

Len = 0x05 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x01 

Address [15:8] = 0x01 

Address [7:0] (LSB) = 0x00 

Address = 0x10100 

0x3B = size of the read 

Then wait for an answer. 

RX: 11 03 3C 00 XX … YY 

Command ID = 0x11 same than our request, that tell us this an answer to our request. 

Read from EEPROM command = 0x03, so this an answer to a read SPI  

Len = 0x3C     so 60 bytes will follow: 1 result code + 59 data 

Result Code =0x00 this an ACK 

The data following the ACK = XX…YY 

Then compare those bytes read (XX…YY) from EEPROM to the file 59 bytes starting at offset 

0x10100, if one byte is different the update of the FX3 firmware has failed! 

FPGA Validation 

The same validation can be done with the FPGA section inside the EEPROM. This step insure 

that no error occur in the FPGA EEPROM update. The principle is simple: read all data in the 

FPGA reserved sectors and compare it to the FPGA bit file.  

The size of the FPGA has been written at address 0x30000 and it should be verified first. Then 

you start at address 0x30100 and verify each byte until the end of the file. If any byte read from 

the EEPROM is not equal to the corresponding byte in the file, then the updated has failed and 

the FPGA need to be updated from the start. That should never happen; if the HID device 

acknowledges a write SPI command it assumes that the write has work. The chance of data being 

incorrectly transfer by HID is small if existent at all.  This is an additional safety measure. 

The SPI read command can be used to get the 5 first byte of address 0x30000 (see Table 13: 

SPI Read Command): 

TX: 12 03 05 00 03 00 00 05 … YY (total 64 bytes) 

Command ID = 0x12 (any value from 0x01 to 0xFF) 

Read from EEPROM command = 0x03 



INOGENI Reference Guide – SDK Documentation – Version 2.6  35 

 

 

Len = 0x05 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x03 

Address [15:8] = 0x00 

Address [7:0] (LSB) = 0x00 

Address = 0x30000 

5 = size of the read 

Then wait for an answer. 

RX: 12 03 06 00 AA BB CC DD EE 00 00 … 

Command ID = 0x12 same than our request, that tell us this an answer to our request. 

Read from EEPROM command = 0x03, so this an answer to a read SPI  

Len = 0x06     so 6 bytes will follow: 1 result code + 5 data 

Result Code =0x00 this an ACK 

The data following the ACK = AA BB CC DD EE 00 00 … 

buffer[0] = AA; 

buffer[1] = BB; 

buffer[2] = CC; 

buffer[3] = DD; 

buffer[4] = EE; 

Verify that byte in buffer [4] is equal to the checksum of the 4 first bytes at address 0x30000: 

for (i = 0; i < 4; i++) 

{ 

   checksum += buffer[i]; 

} 

checksum = ((256 - checksum) % 256); 

if (buffer[4] != checksum) 

{ 

   return false; 

} 
 

The total length retrieved from the EEPROM must match the bit file size: 

TotalLen = (((uint32)buffer[0]) | ((uint32)buffer[1] << 8) | 

((uint32)buffer[2] << 16) | ((uint32)buffer[3]) << 24) ; 
 

If the validation of the size failed, there is no need to push the validation further as this FPGA is 

incorrectly updated. On success you need to read back the whole file and the corresponding 

section in the EEPROM and to compare both for any difference. The following figure is the flow 

chart for validating the whole FPGA bit stream. 

 



INOGENI Reference Guide – SDK Documentation – Version 2.6  36 

 

 

Start

Stop Audio and 

Video Capture

End

Open FPGA .bit file.

Set Address = 

0x30000

Error

Yes

Read up-to 59 bytes 

from file.

Set Len = number 

of bytes read

Error
Yes

Error
Yes

Add Len to Address 

value

Yes

Read  Len bytes 

from EEPROM at 

Address

Compare the bytes 

read from file and 

the bytes read from 

EEPROM

No

Is one or more byte 

different

Len > 0

No

No

Yes

No

Read the 5 first 

bytes at Address.

Compute checksum 

of 4 first bytes and 

compare to byte 5.

Is Checksum validNo

Convert the 4 first 

bytes to suze and 

compare with the 

file size

Is EEPROM retrive 

size equal file size?
No

Add 256 to Address

Yes

 

Figure 7 - FPGA Validation Flow 

 



INOGENI Reference Guide – SDK Documentation – Version 2.6  37 

 

 

The only HID command needed in the validation is the SPI read (see Table 13: SPI Read 

Command): 

Example: Read the first 59 bytes of the FPGA bit stream inside the EEPROM: 

TX: 13 03 05 03 01 01 00 3B … YY (total 64 bytes) 

Command ID = 0x13 (any value from 0x01 to 0xFF) 

Read from EEPROM command = 0x03 

Len = 0x05 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x03 

Address [15:8] = 0x01 

Address [7:0] (LSB) = 0x00 

Address = 0x30100 

0x3B = size of the read 

Then wait for an answer. 

RX: 13 03 3C 00 XX … YY 

Command ID = 0x13 same than our request, that tell us this an answer to our request. 

Read from EEPROM command = 0x03, so this an answer to a read SPI  

Len = 0x3C     so 60 bytes will follow: 1 result code + 59 data 

Result Code =0x00 this an ACK 

The data following the ACK = XX…YY 

Then compare those bytes read (XX…YY) from EEPROM to the file 59 first bytes, if one byte is 

different the update of the FPGA has failed! 

If the dongle reboot before you have a chance to perform the update, the dongle will not be able 

to stream video or audio. In that case, simply re-start the update of the FPGA from the 

beginning. 

EDID Validation 

The EDID can also be validated after update. This step insures that no error has occurred in the 

EEPROM update. The principle is simple: read all data in the EDID reserved sectors and 

compare it to the EDID BIN file. 

You simply start at address 0xFEF00 and verify each byte until the end of the file. The following 

figure is the EDID validation flow chart. 



INOGENI Reference Guide – SDK Documentation – Version 2.6  38 

 

 

Start

Stop Audio and 

Video Capture

End

Open EDID .BIN 

file.

Set Address = 

0xFEF00

Error

No

Yes

Read up-to 59 bytes 

from file.

Set Len = number 

of bytes read

Error
Yes

Error
Yes

Add Len to Address 

value

Yes

Read Len bytes 

from EEPROM at 

Address

Compare the bytes 

read from file and 

the bytes read from 

EEPROM

No

Is one or more byte 

different

Len > 0

No

No

Yes

No

 

Figure 8 - EDID Validation Flow 



INOGENI Reference Guide – SDK Documentation – Version 2.6  39 

 

 

The only HID command needed in the validation is the read SPI (see Table 13: SPI Read 

Command): 

Example: Read the first 59 bytes of the EDID in the EEPROM: 

TX: 14 03 05 00 0F FE 00 3B … YY (total 64 bytes) 

Command ID = 0x14 (any value from 0x01 to 0xFF) 

Read from EEPROM command = 0x03 

Len = 0x05 

SPI dev = 0x00 (always 0x00 for the firmware update) 

Address [23:16] (MSB) = 0x0F 

Address [15:8] = 0xFE 

Address [7:0] (LSB) = 0x00 

Address = 0xFEF00 

0x3B = size of the read 

Then wait for the answer. 

RX: 14 03 3C 00 XX … YY 

Command ID = 0x14 same than our request, that tell us this an answer to our request. 

Read from EEPROM command = 0x03, so this an answer to a read SPI  

Len = 0x3C     so 60 bytes will follow: 1 result code + 59 data 

Result Code =0x00 this an ACK 

The data following the ACK = XX…YY 

Then compare those bytes read (XX…YY) from EEPROM to the file 59 first bytes, if one byte is 

different the update of the EDID has failed! 

If any byte is different the validation has failed. If the device is rebooted with an invalid EDID it 

may be impossible to receive video and audio from some sources if not from all sources. In any 

case of error of the validation (HID Command failed) re-start the validation from the beginning. If 

one byte or more read from the EEPROM is different than the byte read from the file update the 

EDID again from the beginning. 

Final Step 

After the update of the EEPROM, the dongle need to reboot. The reboot is not only necessary so 

the dongle use the new code but it is also necessary because we shut down some important 

features during the update and there is no easy and safe way of turning those features back on. 

The FX3 can be rebooted programmatically using the HID interface. To reboot the FX3 use the 

following HID command: 

TX: EE 08 02 FF 01 00… 00 (total 64 bytes) 

Command ID = 0xEE (any value from 0x01 to 0xFF) 

Debug Write Command = 0x08 

Len = 0x02 

Command Id = 0xFF 

Command data = 0x01 

There is no answer form the dongle to that command: do not wait an ACK, however it could be 

rejected! 



INOGENI Reference Guide – SDK Documentation – Version 2.6  40 

 

 

As Soon as the FX3 received the command it starts to reboot. The dongle will not answer that 

request but you should see the device disappear from the Windows event. Allow several seconds 

for the dongle to reboot, even after the HID device is back wait about 7 seconds before 

communicating with it. Then the update should be complete and the dongle is now updated. 

As an optional final validation, the version of all devices can be retrieved using HDI command to 

verify the version is the expected one (see section  Devices Version). 

11. Bootloader 

There is a danger when updating the dongle FX3, if it fails and the device is power cycled, the 

device won’t reboot. The FX3 dongle will not boot normally, it will boot in bootloader mode.  In 

that case the HID device, the video device and audio device does not appear in device manager. 

This should never happen if the updater follows the procedure, but accident does happen such 

as USB3 device removal or computer power failure during the firmware update. 

To handle device in bootloader mode you need to import the Cypress DLL in your code, which 
means that the bootloader recovery is done only under Windows systems for the moment. 
 

In the software initialisation, create the code to look for the dongle in boot mode: 

USBDeviceList usbDevices; 

CyConst.SetClassGuid("{CDBF8987-75F1-468e-8217-97197F88F773}"); 

usbDevices = new USBDeviceList(CyConst.DEVICES_CYUSB); 

 

// optionally you can put an handler to dtect the addition or removal of a device in bootmode 

usbDevices.DeviceRemoved += new EventHandler(usbDevices_DeviceRemoved); 

usbDevices.DeviceAttached += new EventHandler(usbDevices_DeviceAttached); 

 

In the upload function you can now search for dongle in boot mode and update it with a temporary 
image file. After simply follow the normal EEPROM update for the FX3 (see FX3 Firmware 
Update) and after the update of the other device if necessary. 
. 
//Then check for a device in boot mode 

foreach (USBDevice FxDev in usbDevices) 

{ 

 //dev is a USBDevice, so a Cyprees bootloader device 

          // check for bootloader first, if it is not running then prompt message to user. 

            if (!fx.IsBootLoaderRunning()) 

            { 

MessageBox.Show("Please reset your device to download firmware", "Bootloader is 

not running"); 

                return; 

            } 

 

 

            if (FxDev != null)  

            { 

                    FX3_FWDWNLOAD_ERROR_CODE enmResult = FX3_FWDWNLOAD_ERROR_CODE.SUCCESS; 

 

                    StatLabel.Text = "Programming RAM of " + FxDev.FriendlyName; 

                    Refresh(); 

 

                    enmResult = fx.DownloadFw(filename, FX3_FWDWNLOAD_MEDIA_TYPE.RAM); 

 

                 StatLabel.Text = "Programming " + fx.GetFwErrorString(enmResult); 

                 Refresh(); 



INOGENI Reference Guide – SDK Documentation – Version 2.6  41 

 

 

           } 

} 

 

12.Troubleshooting 

The previous sections does cover munch what to do in case of error.  

 HID Command Fail 

The dongle is multithreaded application that handles different module and IC at the same times. 

It is possible to get a BUSY reject code, especially when it is occupied at streaming video and/or 

audio. The result code BUSY (see Table 8: Error Code) should not be consider as an error and 

the software should be ready to handle them with retries. Other error code should not normally 

happen; if it does the software should consider the operation has failed. 

 Update Failure 

If the device update failed due to HID command rejected or to any other error the software updater 

should start the update from the start. The updater should not reboot after a failed update it should 

try again the update, starting with the sector erase.  

 Update Failure FX3 

The FX3 is the processor controlling the HID, if the update is incorrectly done and the device is 

rebooted or if the device is power cycled or remove from USB3 port during the update. The device 

will fall in bootloader mode, so no HID device will be visible on the computer.  The device 

bootloader can be updated with a temporary .img file using the Cypress bootloader dll. For more 

information on handling a device in bootmode see the  Bootloader section. 

Update Failure FPGA 

If the update of the FPGA failed and the device is rebooted the FPGA will not be loaded. When 

you send get version command the FX3 will return a 0 as FGPA version. Note that the FPGA is 

responsible of video and audio streaming, therefore you will not be able to do those actions if the 

device has rebooted with a corrupted FPGA EEPROM. However the HID device will be unaffected 

so simply do the update again and reboot the device. 

Update Failure EDID 

If the update of the EDID failed and the device is rebooted the EDID will be invalid and then 

rejected by all video and audio source. With an invalid EDID, audio and video source may refuse 

to stream video to the dongle or use unsupported settings making the audio and video to be 

incorrect. The HID device will be unaffected by booting with an invalid EDID, so simply do the 

update again. Note that checking the EDID version is not a good validation as this is only looking 

at a specific byte and does not do a checksum validation. 

Validation Failure 

If the validation of one device failed, the update should be done again before rebooting the device. 

The Device Disappear 

If the update of the FX3 is incorrectly done, the video device, the audio device and the HID device 

will not appear in the Windows Device Manager. In that case the device will appear with a different 



INOGENI Reference Guide – SDK Documentation – Version 2.6  42 

 

 

vendor id and product id as a Cypress Boot loader device. A temporary .img file can be program 

using the Cypress bootloader. But note that only temporary image file is uploaded using the 

bootloader. Once the temporary FX3 firmware is uploaded the HID device will appear then you 

must upload a new FX3 firmware in the EEPROM (see FX3 Firmware Update). Note the Cypress 

bootloader offer a SPI firmware update but DO NOT USE IT as it will erase all other device than 

the FX3 and additional important data in the EEPROM.  


